
Simple and Composite Metrics
for System Throughput

in HPC
John D. McCalpin, Ph.D.

IBM Corporation
Austin, TX

Workshop on Performance Characterization,
Modelling and Benchmarking for HPC Systems

May 6, 2003

What Are We Doing Here?

• There are many different problems being
addressed in this workshop – maybe too
many

What Are We Doing Here?

• There are many different problems being
addressed in this workshop – maybe too
many

• Some problems are relatively easy
– Simple kernel benchmarks

What Are We Doing Here?

• There are many different problems being
addressed in this workshop – maybe too
many

• Some problems are relatively easy
• Some problems are hard, but tractable

– Application-specific performance models

What Are We Doing Here?

• There are many different problems being
addressed in this workshop – maybe too
many

• Some problems are relatively easy
• Some problems are hard, but tractable
• Some problems are intractable, but too

important to give up on
– What is the relative “science value” of

System A vs System B?

Topics of Interest

• What is the correct arithmetical calculus for
performance evaluation?

Topics of Interest

• What is the correct arithmetical calculus for
performance evaluation?

• How general (or how specific) do we want this
analysis to be?

Topics of Interest

• What is the correct arithmetical calculus for
performance evaluation?

• How general (or how specific) do we want this
analysis to be?

• How much is it going to bother us when we are
wrong?

The Calculus of Performance Modelling

• This calculus looks a lot like an extension of
Amdahl’s Law
– Amdahl’s Law is really a very narrow special case of

the more general calculus

• Key Concepts
– Lots of “stuff” happens in parallel on independent

pieces of the system
– The amount of overlap across this parallel “stuff” is

variable and can be nearly impossible to predict

What parallelism am I talking about?

• This is not necessarily “parallelism” in the
Amdahl’s Law sense

• Amdahl’s Law is a special case
– Assumes homogeneity of parallel work
– Assumes no overlap between serial and parallel work
– Assumes no additional parallel overheads

What parallelism am I talking about?

• Examples of parallel hardware components
– Floating-point functional units
– Load/store units
– Integer functional units
– Branch units
– Register file(s)
– L1, L2, L3 (…) cache miss handling control structures (I & D)
– Wires/busses connecting levels of the memory hierarchy
– L1, L2, L3, memory RAM banks
– Virtual address translation facilities

• This is already more than 10 degrees of parallelism for
each processor for most current architectures
– A “balanced” code has lots of potential for overlap – or not

Performance ? 1/Time

• Time = Work/Rate
• Repeat for each component: Ti = Wi/Ri

Performance ? 1/Time

• Time = Work/Rate
• Repeat for each component: Ti = Wi/Ri

• Big Issues:
– Where do we get the Wi’s?
– Can we understand the Ri’s well enough to be useful?
– How do we combine the Ti’s?

Performance ? 1/Time

• Time = Work/Rate
• Repeat for each component: Ti = Wi/Ri

• Big Issues:
– Where do we get the Wi’s?
– Can we understand the Ri’s well enough to be useful?
– How do we combine the Ti’s?

• This talk will mostly address this last issue

Arithmetic Formulation of the Calculus

• The Calculus is based on a new arithmetic operator, called
“plus or max” – I will use the infix symbol “$” here

• Definition
Max(T1,T2) = T1 $ T2 = T1+T2

• Assume:
– W1/R1 = T1 when executed in isolation
– W2/R2 = T2 when executed in isolation

• Q: How long does it take to perform W1 and W2 at the same
time?

• A: Ttotal = T1 $ T2
– I assert that this holds true for most sets of “independent” operations

on most computer systems

Consequences of the Calculus

• Note that “=” now means a range of values

• The “plus or max” operator is associative and
commutative, just like normal addition

• The composite operator can be written:

?
???

??
N

1i
ii

N

1i
i

N

1i
TT)(TMAX $

Bounds

• Note that the ratio of upper bound to lower bound
is equal to the number of degrees of parallelism in
the model

• In reality, the ratio is equal to the number of
degrees of parallelism in the system !
– This number can be uncomfortably large
– Unbalanced systems make for easier performance

projections

?
?

???
????

N

1i
i

N

iii

N

1i
i

N

i
)(TMAX NTT)(TMAX $

11

A Dilemna

• Parallelism is essential for increasing potential
performance
– Every generation of systems has more parallelism and more

kinds of parallelism
– It is being increased by the vendors whether you want it or not

• Parallelism also increases the uncertainty of performance
models
– This is intrinsic to the performance calculus
– It is exacerbated by the lack of transparency in the amount of

overlap possible between parallel “stuff”
– This is inevitable as systems get more and more complex

The Dilemna, continued

• Recall that the parallelism considered here is the parallelism
of the real hardware, not the parallelism of the model
– Reducing the complexity of the model does not help!
– But it gets worse…

• The Competitive Benchmarketing Hypothesis:
For any system with N degrees of parallelism, at least one
application can be found that is limited in performance by
each and every one of those N degrees

• Consequence:
For any “reduced” performance model, errors in performance
projection of O(1) are guaranteed for some set of applications

We still need to deal with Horst’s question

• How do we quantify the relative “performance value” of
various systems for “general” scientific research?

• Maybe someday we can accumulate enough data about
enough applications to make credible estimates of the
distributions of the Wi’s by application area, but I remain
skeptical of the potential for non-application-specific
modelling…

• For now we need to wing it^H^H^H^H^H^H^H apply
heuristics

Current Status for Composite Performance
Metrics

• We don’t have an exhaustive list of the parallel
functional units for each system (definitely not a
portable list)

Current Status for Composite Performance
Metrics

• We don’t have an exhaustive list of the parallel
functional units for each system (definitely not a
portable list)

• We don’t know the detailed formulae for the Ri’s
for each of those functional units

Current Status for Composite Performance
Metrics

• We don’t have an exhaustive list of the parallel
functional units for each system (definitely not a
portable list)

• We don’t know the detailed formulae for the Ri’s
for each of those functional units

• We don’t have the Wi’s to calculate the Ti’s

Current Status for Composite Performance
Metrics

• We don’t have an exhaustive list of the parallel
functional units for each system (definitely not a
portable list)

• We don’t know the detailed formulae for the Ri’s
for each of those functional units

• We don’t have the Wi’s to calculate the Ti’s
• We would not be able to figure out how the T i’s

overlap (or not) anyway

Current Status for Composite Performance
Metrics

• We don’t have an exhaustive list of the parallel
functional units for each system (definitely not a
portable list)

• We don’t know the detailed formulae for the Ri’s
for each of those functional units

• We don’t have the Wi’s to calculate the Ti’s
• We would not be able to figure out how the T i’s

overlap (or not) anyway
• Other than that, we are in great shape!

So what to do?

• We cannot handle all of the possible bottlenecks
• So we take the most common bottlenecks and rank

order them
• Data to build these rankings is still mostly based

on “educated guess”

Methodology from 15,240 meters

• Pick a workload of interest & gather
performance characteristics

• Start with the most common bottleneck, estimate
the Wi, build a model T i = Wi/Ri

• Add the next most common bottleneck, estimate
the Wi, and ponder the overlap issues

• Repeat until you cannot reduce the error of the
projections any more

A Simple Constructive Methodology

• The target workload is SPECfp_rate2000
– All 331 published values as of November 12, 2002

• Assume that FP arithmetic is the primary
bottleneck

• Add memory bandwidth as the secondary
bottleneck

• No Wi’s were measured
– model values were obtained a posteriori by

modifying the parameters of a simple analytic model
to minimize the RMS error of the projections

SPECfp_rate2000/cpu vs Peak GFLOPS

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0.000 1.000 2.000 3.000 4.000 5.000 6.000

Peak GFLOPS/cpu

S
P

E
C

fp
_r

at
e2

00
0/

cp
u

Does Peak GFLOPS predict SPECfp_rate2000?

SPECfp_rate2000 vs SWIM BW

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

SWIM BW (GB/s)

S
P

E
C

fp
_r

at
e2

00
0/

cp
u

Does Sustained Memory Bandwidth predict
SPECfp_rate2000?

A Simple Composite Model

• Assume the time to solution is composed of a compute time
proportional to peak GFLOPS plus a memory transfer time
proportional to sustained memory bandwidth

• Assume “1 Byte/FLOP” to get:

• Use performance of 171.swim from SPECfp_rate2000 as a
proxy for memory bandwidth
Sustained BW = (478.3 GB * (# of copies)) / (run time for 171.swim)

?
?
?

?
?
???

?
?

?
?
?

?

GB/s Sustained
Byte1

GFLOPSPeak
op FP 1

op" FP Effective" 1
 GFLOPS" Effective"

Why 1 Byte/FLOP ?

SPECfp_rate2000/cpu vs MMM/cpu

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0.000 0.500 1.000 1.500 2.000 2.500

MMM/cpu (GFLOPS)

S
P

E
C

fp
_r

at
e2

00
0/

cp
u

How does the “1 Byte per FLOP” model do?

MMM error vs cache size

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

0 2 4 6 8 10 12 14 16 18

Cache Size (MB)

E
rr

o
r

in
 M

M
M

 p
re

d
ic

ti
o

n

“1 Byte/FLOP” model error vs cache size

Make “Bytes/FLOP” a simple function of cache size

Assumed Bytes/FLOP

Cache Size (MB)

B
yt

es
/F

LO
P

Make “Bytes/FLOP” a simple function of cache size

• Minimize RMS error to calculate the four parameters:
– Bytes/FLOP for large caches
– Bytes/FLOP for small caches
– Size of asymptotically large cache
– Coefficient of best-fit to SPECfp_rate2000/cpu

• Results (rounded to nearby round values):
– Bytes/FLOP for large caches === 0.333 (*)
– Bytes/FLOP for small caches === 1.00
– Size of asymptotically large cache === 6 MB
– Coefficient of best fit === 6.7 (+/- 0.1) (*)
– The units of the coefficient are

SPECfp_rate2000 / Effective GFLOPS

(*) Revised to 2002-11-22

Make “Bytes/FLOP” a simple function of cache size

Assumed Bytes/FLOP

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 2 4 5 7 9 11 12 14 16 18 19 21 23 25 26 28 30 32

Cache Size (MB)

B
yt

es
/F

L
O

P

Does this Revised Metric predict SPECfp_rate2000?

SPECfp_rate2000/cpu vs MMM2

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 0.5 1 1.5 2 2.5 3

MMM2 (GFLOPS)

S
P

E
C

fp
_r

at
e2

00
0/

cp
u

Statistical Metrics

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Peak
GFLOPS

SWIM BW 1 B/F Optimal
B/F

R squared
(Std Error)/Mean

Revised to 2002-11-22

Does the Optimized Metric have Systematic Errors
vs Cache Size?

MMM2 err vs $ size

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

0 2 4 6 8 10 12 14 16 18

Cache Size (MB)

S
P

E
C

fp
_r

at
e2

00
0/

cp
u

 e
rr

o
r

Revised to 2002-11-21

Does the Optimized Metric have Systematic Errors vs
SMP size?

%MM2 err vs NCPUs

-60.0%

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

0 50 100 150 200 250 300

Number of CPUs

%
 e

rr
o

r
in

 S
P

E
C

fp
_r

at
e2

00
0

es
ti

m
at

e

Revised to 2002-11-21

More Comments

• There is some evidence of a systematic
error related to load/store capability vs FP
capability
– Systems with one load or store per peak FLOP

(e.g., EV6, PentiumIII) do better on
SPECfp_rate2000 than the optimized metric
suggests

– Systems capable of 4 FP ops per clock do less
well on SPECfp_rate2000 than the metric
suggests

More Comments (continued)

• Unfortunately, recasting in terms of peak
LoadStore rate does not improve the statistics

• Arbitrary harmonic combinations of Peak
GFLOPS and Peak LoadStore provide only a little
improvement in the statistics, though it does
eliminate a few of the outliers
– R-squared increases from 0.85 to 0.87
– Normalized Std Error decreases from 16% to 15%

Revised to 2002-11-21

Comments

• Obviously, these coefficients were derived to
match the SPECfp_rate2000 data set, not a
“typical” set of supercomputing applications

• However, the results are encouraging, delivering a
projection with 15% accuracy (one sigma) using a
model based on only one measurement
(sustainable memory bandwidth), plus
specification of several architectural features

One More Attempt

• A more complex model (10 DOF) was created
based on Origin2000 performance counters with a
heuristic model for overlap

• The Wi’s were obtained from Origin2000
performance counters

• The goal was to see how well the heuristic model
could reproduce the observed performance of the
Origin2000 on a set of 25 ISV and community
applications

Comments on 10 DOF model

• About 75% of predictions were within 10% of
observed results

• A few outliers were probably caused by excessive
I/O (which was not measured by the performance
monitoring facility)

• The model was very simple and was not tuned to
fit the data

• Slightly better than the SPEC projections earlier,
but the data sets were different, and the
projections were all for single-threaded jobs
running on a single system (the Origin2000)

Final Summary

• The composite methodology is
– Simple to understand
– Simple to measure (but aggregating Wi’s will be much work)
– Based on a mathematically correct model of performance
– Based on a backwards-looking view of performance bottlenecks

• As an example, adding STREAM benchmark data to the
TOP500 database would allow such metrics to be constructed

• Obviously, much work remains on consistent modelling of the
influence of non-local data transfer in the performance of
supercomputers
– The good news is that LogP models have been very successful in the

past, using methodologies similar to what I have described here

I lied, I am not really done yet

• I applied the MMM2 methodology to the TOP500
list

• I estimated cache sizes and STREAM Triad
bandwidth for all 500 systems

• I used the same Bytes/FLOP parameter as in the
SPECfp_rate2000 study
– 1 B/F for small caches
– 0.33 B/F for large caches
– 6 MB is the cut-off for “large” caches

0.01

0.1

1

10

100

G
F

LO
P

S
/C

P
U

Rmax/cpu

Triad/cpu
MMM2/cpu

Performance Ranges per CPU

0.01

0.1

1

10

100

G
F

LO
P

S

Rmax/cpu

Triad/cpu
MMM2/cpu
MMM/cpu

Performance Ranges
MMM vs MMM2

Comments

• Results shown per cpu
– Earth Simulator is at position #30

• Sorted by MMM2 (cache-size-dependent MMM)
• Lower bound is STREAM Triad MFLOPS

– Equal STREAM Triad MB/s divided by 12 Bytes/FLOP

• Upper bound is LINPACK Rmax
• Both MMM and MMM are rational and quantitative

methodology for picking an intermediate value in this
(very large) range, with different interpretations of the
impact of cache size on bandwidth requirements

Backup Slides

Notes about methodology and about
the STREAM benchmark

Methodology

• I extracted all the SPECfp_rate2000 (peak) results from the
SPEC database on about 2002-11-12
– Include cpu type, cpu frequency, cache sizes
– Include 171.swim performance (time in seconds)
– The data set included 331 results

• I added “peak FP ops/Hz” based on other published
sources
– Revisions on 2002-11-21 corrected this value for Fujitsu systems

• I defined “cache” as the largest on-chip cache or off-chip
SRAM cache.
– Off-chip DRAM caches are much less effective at improving

performance, and degrade the accuracy of the proposed metric

Revised to 2002-11-21

The STREAM benchmark

• Not as old as LINPACK, but older than the TOP500 list
– First published in 1991, revised as new results delivered
– Currently contains 750 results in the table
– Covers a very wide variety of systems

• STREAM is also an accidental benchmark
– Developed in 1990-1991 to show why available systems had

such wide variation in performance on my ocean models

STREAM (continued)

• STREAM is very simple
– Measure the sustained memory bandwidth for a

set of four computational kernels
• COPY: A(I) = B(I)
• SCALE: A(I) = Q*B(I)
• ADD: A(I) = A(I) + B(I)
• TRIAD: A(I) = A(I) + Q*B(I)

– Make sure that each of the vectors is chosen to
be larger than the available cache(s)

STREAM (continued)

• STREAM is not intended to predict performance
• STREAM acts as a counterpoint to LINPACK

– LINPACK does not require significant memory
bandwidth

– STREAM does not require significant computational
capability

• Can LINPACK and STREAM be used together to
provide much more information to the public than
either metric in isolation?

